Techniques for Traffic Sign Classification Using Machine Learning-a Survey
نویسنده
چکیده
The Road Sign Recognition is a field of applied computer vision research concerned with the automatic detection and classification of traffic signs in traffic scene images. The aim of this research paper is to study the various classification techniques that can be used to construct a system that recognizes road signs in images. The primary objective is to develop an algorithm which will identify various types of road signs from static digital images in a reasonable time frame. In this research paper, we will study the various learning systems that are based on prior knowledge for classification. A road sign recognition system faces a classical problem of pattern recognition, classifying between different road signs. On top of that, the location of the road sign in the picture is unknown. Once these obstacles are overcome, such system could be integrated in a Smart Driver system. A variety of MATLAB Image processing toolbox commands can be used to determine if a road sign is present in the image. Neural network or other classification techniques can be applied in order to classify the road signs.
منابع مشابه
Behavioral Analysis of Traffic Flow for an Effective Network Traffic Identification
Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملT.T.T.Nguyen, G.Armitage, A Survey of Techniques for Internet Traffic Classification using Machine Learning A Survey of Techniques for Internet Traffic Classification using Machine Learning
The research community has begun looking for IP traffic classification techniques that do not rely on ‘well known’ TCP or UDP port numbers, or interpreting the contents of packet payloads. New work is emerging on the use of statistical traffic characteristics to assist in the identification and classification process. This survey paper looks at emerging research into the application of Machine ...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کامل